Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 99: 104932, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118400

RESUMO

BACKGROUND: The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to approximately 500 million cases and 6 million deaths worldwide. Previous investigations into the pathophysiology of SARS-CoV-2 primarily focused on peripheral blood mononuclear cells from patients, lacking detailed mechanistic insights into the virus's impact on inflamed tissue. Existing animal models, such as hamster and ferret, do not faithfully replicate the severe SARS-CoV-2 infection seen in patients, underscoring the need for more relevant animal system-based research. METHODS: In this study, we employed single-cell RNA sequencing (scRNA-seq) with lung tissues from K18-hACE2 transgenic (TG) mice during SARS-CoV-2 infection. This approach allowed for a comprehensive examination of the molecular and cellular responses to the virus in lung tissue. FINDINGS: Upon SARS-CoV-2 infection, K18-hACE2 TG mice exhibited severe lung pathologies, including acute pneumonia, alveolar collapse, and immune cell infiltration. Through scRNA-seq, we identified 36 different types of cells dynamically orchestrating SARS-CoV-2-induced pathologies. Notably, SPP1+ macrophages in the myeloid compartment emerged as key drivers of severe lung inflammation and fibrosis in K18-hACE2 TG mice. Dynamic receptor-ligand interactions, involving various cell types such as immunological and bronchial cells, defined an enhanced TGFß signaling pathway linked to delayed tissue regeneration, severe lung injury, and fibrotic processes. INTERPRETATION: Our study provides a comprehensive understanding of SARS-CoV-2 pathogenesis in lung tissue, surpassing previous limitations in investigating inflamed tissues. The identified SPP1+ macrophages and the dysregulated TGFß signaling pathway offer potential targets for therapeutic intervention. Insights from this research may contribute to the development of innovative diagnostics and therapies for COVID-19. FUNDING: This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020M3A9I2109027, 2021R1A2C2004501).


Assuntos
COVID-19 , Melfalan , gama-Globulinas , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Furões , Brônquios , Fator de Crescimento Transformador beta , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
3.
Exp Mol Med ; 55(12): 2541-2552, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37907741

RESUMO

Translational regulation in tissue environments during in vivo viral pathogenesis has rarely been studied due to the lack of translatomes from virus-infected tissues, although a series of translatome studies using in vitro cultured cells with viral infection have been reported. In this study, we exploited tissue-optimized ribosome profiling (Ribo-seq) and severe-COVID-19 model mice to establish the first temporal translation profiles of virus and host genes in the lungs during SARS-CoV-2 pathogenesis. Our datasets revealed not only previously unknown targets of translation regulation in infected tissues but also hitherto unreported molecular signatures that contribute to tissue pathology after SARS-CoV-2 infection. Specifically, we observed gradual increases in pseudoribosomal ribonucleoprotein (RNP) interactions that partially overlapped the trails of ribosomes, being likely involved in impeding translation elongation. Contemporaneously developed ribosome heterogeneity with predominantly dysregulated 5 S rRNP association supported the malfunction of elongating ribosomes. Analyses of canonical Ribo-seq reads (ribosome footprints) highlighted two obstructive characteristics to host gene expression: ribosome stalling on codons within transmembrane domain-coding regions and compromised translation of immunity- and metabolism-related genes with upregulated transcription. Our findings collectively demonstrate that the abrogation of translation integrity may be one of the most critical factors contributing to pathogenesis after SARS-CoV-2 infection of tissues.


Assuntos
COVID-19 , Animais , Camundongos , RNA Mensageiro/genética , COVID-19/genética , SARS-CoV-2/genética , Biossíntese de Proteínas , Pulmão/metabolismo
4.
Am J Pathol ; 193(7): 866-882, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024046

RESUMO

The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.


Assuntos
COVID-19 , Camundongos , Humanos , Animais , SARS-CoV-2/metabolismo , Peptidil Dipeptidase A/metabolismo , Camundongos Transgênicos , Suscetibilidade a Doenças , Células Apresentadoras de Antígenos , Modelos Animais de Doenças , Pulmão/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047092

RESUMO

Nuclear factor kappa B (NF-κB) signaling pathways progress inflammation and immune cell differentiation in the host immune response; however, the uncontrollable stimulation of NF-κB signaling is responsible for several inflammatory illnesses regardless of whether the conditions are acute or chronic. Innate immune cells, such as macrophages, microglia, and Kupffer cells, secrete pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1ß, via the activation of NF-κB subunits, which may lead to the damage of normal cells, including neurons, cardiomyocytes, hepatocytes, and alveolar cells. This results in the occurrence of neurodegenerative disorders, cardiac infarction, or liver injury, which may eventually lead to systemic inflammation or cancer. Recently, ginsenosides from Panax ginseng, a historical herbal plant used in East Asia, have been used as possible options for curing inflammatory diseases. All of the ginsenosides tested target different steps of the NF-κB signaling pathway, ameliorating the symptoms of severe illnesses. Moreover, ginsenosides inhibit the NF-κB-mediated activation of cancer metastasis and immune resistance, significantly attenuating the expression of MMPs, Snail, Slug, TWIST1, and PD-L1. This review introduces current studies on the therapeutic efficacy of ginsenosides in alleviating NF-κB responses and emphasizes the critical role of ginsenosides in severe inflammatory diseases as well as cancers.


Assuntos
Antineoplásicos , Ginsenosídeos , Panax , NF-kappa B/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Panax/metabolismo , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Antineoplásicos/farmacologia
6.
Molecules ; 28(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838938

RESUMO

Muscle atrophy, also known as muscle wasting, is the thinning of muscle mass due to muscle disuse, aging, or diseases such as cancer or neurological problems. Muscle atrophy is closely related to the quality of life and has high morbidity and mortality. However, therapeutic options for muscle atrophy are limited, so studies to develop therapeutic agents for muscle loss are always required. For this study, we investigated how orally administered specific collagen peptides (CP) affect muscle atrophy and elucidated its molecular mechanism using an in vivo model. We treated mice with dexamethasone (DEX) to induce a muscular atrophy phenotype and then administered CP (0.25 and 0.5 g/kg) for four weeks. In a microcomputed tomography analysis, CP (0.5 g/kg) intake significantly increased the volume of calf muscles in mice with DEX-induced muscle atrophy. In addition, the administration of CP (0.25 and 0.5 g/kg) restored the weight of the gluteus maximus and the fiber cross-sectional area (CSA) of the pectoralis major and calf muscles, which were reduced by DEX. CP significantly inhibited the mRNA expression of myostatin and the phosphorylation of Smad2, but it did not affect TGF-ß, BDNF, or FNDC5 gene expression. In addition, AKT/mTOR, a central pathway for muscle protein synthesis and related to myostatin signaling, was enhanced in the groups that were administered CP. Finally, CP decreased serum albumin levels and increased TNF-α gene expression. Collectively, our in vivo results demonstrate that CP can alleviate muscle wasting through a multitude of mechanisms. Therefore, we propose CP as a supplement or treatment to prevent muscle atrophy.


Assuntos
Colágeno , Atrofia Muscular , Miostatina , Animais , Camundongos , Dexametasona/efeitos adversos , Fibronectinas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Microtomografia por Raio-X , Colágeno/farmacologia
7.
Pulm Pharmacol Ther ; 80: 102189, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36634813

RESUMO

Throughout the recent COVID-19 pandemic, South Korea led national efforts to develop vaccines and therapeutics for SARS-CoV-2. The project proceeded as follows: 1) evaluation system setup (including Animal Biosafety Level 3 (ABSL3) facility alliance, standardized nonclinical evaluation protocol, and laboratory information management system), 2) application (including committee review and selection), and 3) evaluation (including expert judgment and reporting). After receiving 101 applications, the selection committee reviewed pharmacokinetics, toxicity, and efficacy data and selected 32 final candidates. In the nonclinical efficacy test, we used golden Syrian hamsters and human angiotensin-converting enzyme 2 transgenic mice under a cytokeratin 18 promoter to evaluate mortality, clinical signs, body weight, viral titer, neutralizing antibody presence, and histopathology. These data indicated eight new drugs and one repositioned drug having significant efficacy for COVID-19. Three vaccine and four antiviral drugs exerted significant protective activities against SARS-CoV-2 pathogenesis. Additionally, two anti-inflammatory drugs showed therapeutic effects on lung lesions and weight loss through their mechanism of action but did not affect viral replication. Along with systematic verification of COVID-19 animal models through large-scale studies, our findings suggest that ABSL3 multicenter alliance and nonclinical evaluation protocol standardization can promote reliable efficacy testing against COVID-19, thus expediting medical product development.


Assuntos
COVID-19 , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Neutralizantes , Mesocricetus , Modelos Animais de Doenças
9.
Front Immunol ; 13: 1055811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457995

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has been a global health concern since 2019. The viral spike protein infects the host by binding to angiotensin-converting enzyme 2 (ACE2) expressed on the cell surface, which is then processed by type II transmembrane serine protease. However, ACE2 does not react to SARS-CoV-2 in inbred wild-type mice, which poses a challenge for preclinical research with animal models, necessitating a human ACE2 (hACE2)-expressing transgenic mouse model. Cytokeratin 18 (K18) promoter-derived hACE2 transgenic mice [B6.Cg-Tg(K18-ACE2)2Prlmn/J] are widely used for research on SARS-CoV-1, MERS-CoV, and SARS-CoV-2. However, SARS-CoV-2 infection is lethal at ≥105 PFU and SARS-CoV-2 target cells are limited to type-1 alveolar pneumocytes in K18-hACE2 mice, making this model incompatible with infections in the human lung. Hence, we developed lung-specific SARS-CoV-2 infection mouse models with surfactant protein B (SFTPB) and secretoglobin family 1a member 1 (Scgb1a1) promoters. After inoculation of 105 PFU of SARS-CoV-2 to the K18-hACE2, SFTPB-hACE2, and SCGB1A1-hACE2 models, the peak viral titer was detected at 2 days post-infection and then gradually decreased. In K18-hACE2 mice, the body temperature decreased by approximately 10°C, body weight decreased by over 20%, and the survival rate was reduced. However, SFTPB-hACE2 and SCGB1A1-hACE2 mice showed minimal clinical signs after infection. The virus targeted type I pneumocytes in K18-hACE2 mice; type II pneumocytes in SFTPB-hACE2 mice; and club, goblet, and ciliated cells in SCGB1A1-hACE2 mice. A time-dependent increase in severe lung lesions was detected in K18-hACE2 mice, whereas mild lesions developed in SFTPB-hACE2 and SCGB1A1-hACE2 mice. Spleen, small intestine, and brain lesions developed in K18-hACE2 mice but not in SFTPB-hACE2 and SCGB1A1-hACE2 mice. These newly developed SFTPB-hACE2 and SCGB1A1-hACE2 mice should prove useful to expand research on hACE2-mediated respiratory viruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Humanos , Camundongos , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/genética , Modelos Animais de Doenças , Camundongos Transgênicos , SARS-CoV-2
10.
Mol Cells ; 45(12): 896-910, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36324270

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and potentially fatal virus. So far, most comprehensive analyses encompassing clinical and transcriptional manifestation have concentrated on the lungs. Here, we confirmed evident signs of viral infection in the lungs and spleen of SARS-CoV-2-infected K18-hACE2 mice, which replicate the phenotype and infection symptoms in hospitalized humans. Seven days post viral detection in organs, infected mice showed decreased vital signs, leading to death. Bronchopneumonia due to infiltration of leukocytes in the lungs and reduction in the spleen lymphocyte region were observed. Transcriptome profiling implicated the meticulous regulation of distress and recovery from cytokine-mediated immunity by distinct immune cell types in a time-dependent manner. In lungs, the chemokine-driven response to viral invasion was highly elevated at 2 days post infection (dpi). In late infection, diseased lungs, post the innate immune process, showed recovery signs. The spleen established an even more immediate line of defense than the lungs, and the cytokine expression profile dropped at 7 dpi. At 5 dpi, spleen samples diverged into two distinct groups with different transcriptome profile and pathophysiology. Inhibition of consecutive host cell viral entry and massive immunoglobulin production and proteolysis inhibition seemed that one group endeavored to survive, while the other group struggled with developmental regeneration against consistent viral intrusion through the replication cycle. Our results may contribute to improved understanding of the longitudinal response to viral infection and development of potential therapeutics for hospitalized patients affected by SARS-CoV-2.


Assuntos
COVID-19 , Viroses , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Citocinas , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Pulmão , Camundongos Transgênicos , SARS-CoV-2 , Baço/metabolismo , Transcriptoma
11.
Dis Model Mech ; 15(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222118

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, causes life-threatening disease. This novel coronavirus enters host cells via the respiratory tract, promoting the formation of severe pulmonary lesions and systemic disease. Few animal models can simulate the clinical signs and pathology of COVID-19 patients. Diverse preclinical studies using K18-hACE2 mice and Syrian golden hamsters, which are highly permissive to SARS-CoV-2 in the respiratory tract, are emerging; however, the systemic pathogenesis and cellular tropism of these models remain obscure. We intranasally infected K18-hACE2 mice and Syrian golden hamsters with SARS-CoV-2, and compared the clinical features, pathogenesis, cellular tropism and infiltrated immune-cell subsets. In K18-hACE2 mice, SARS-CoV-2 persistently replicated in alveolar cells and caused pulmonary and extrapulmonary disease, resulting in fatal outcomes. Conversely, in Syrian golden hamsters, transient SARS-CoV-2 infection in bronchial cells caused reversible pulmonary disease, without mortality. Our findings provide comprehensive insights into the pathogenic spectrum of COVID-19 using preclinical models.


Assuntos
COVID-19 , Cricetinae , Camundongos , Animais , Mesocricetus , SARS-CoV-2 , Modelos Animais de Doenças , Pulmão/patologia , Camundongos Transgênicos
12.
Lab Anim Res ; 38(1): 17, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765097

RESUMO

BACKGROUND: As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. RESULTS: In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. CONCLUSIONS: This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.

13.
J Oral Microbiol ; 14(1): 2088937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756538

RESUMO

Background: Streptococcus mutans, an important Gram-positive pathogen in dental caries, uses sortase A (SrtA) to anchor surface proteins to the bacterial cell wall, thereby promoting biofilm formation and attachment to the tooth surface. Design: Based on activity-guided separation, inhibitors of S. mutans SrtA were isolated from Juniperus chinensis and identified through combined spectroscopic analysis. Further effects of isolated SrtA inhibitor on S. mutans were evaluated on bacterial aggregation, adherence and biofilm formation. Results: Six compounds (1-6) were isolated from the dried heartwood of J. chinensis. A novel compound designated 3',3"-dihydroxy-(-)-matairesinol (1) was identified, which exhibited potent inhibitory activity toward S. mutans SrtA (IC50 = 16.1 µM) without affecting microbial viability (minimum inhibitory concentration > 300 µM). The results of subsequent bioassays using compound 1 indicated that this compound inhibits S. mutans aggregation, adhesion and biofilm formation on solid surfaces by inhibiting SrtA activity. The onset and magnitude of inhibition of adherence and biofilm formation in S. mutans treated with compound 1 at 4× the SrtA IC50 are comparable to the behaviors of the untreated srtA-deletion mutant. Conclusion: Our findings suggest that small-molecule inhibitors of S. mutans SrtA may be useful for the prevention of dental plaque and treatment of dental microbial diseases.

14.
Mar Drugs ; 20(2)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35200667

RESUMO

Two nitrogenous metabolites, bacillimide (1) and bacillapyrrole (2), were isolated from the culture broth of the marine-derived actinomycete Streptomyces bacillaris. Based on the results of combined spectroscopic and chemical analyses, the structure of bacillimide (1) was determined to be a new cyclopenta[c]pyrrole-1,3-dione bearing a methylsulfide group, while the previously reported bacillapyrrole (2) was fully characterized for the first time as a pyrrole-carboxamide bearing an alkyl sulfoxide side chain. Bacillimide (1) and bacillapyrrole (2) exerted moderate (IC50 = 44.24 µM) and weak (IC50 = 190.45 µM) inhibitory effects on Candida albicans isocitrate lyase, respectively. Based on the growth phenotype using icl-deletion mutants and icl expression analyses, we determined that bacillimide (1) inhibits the transcriptional level of icl in C. albicans under C2-carbon-utilizing conditions.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Isocitrato Liase/efeitos dos fármacos , Streptomyces/metabolismo , Antifúngicos/isolamento & purificação , Candida albicans/enzimologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Nitrogênio/metabolismo
15.
Front Microbiol ; 12: 732450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630356

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape vaccine-induced neutralizing antibodies has indicated the importance of T cell responses against this virus. In this study, we highlight the SARS-CoV-2 epitopes that induce potent T cell responses and discuss whether T cell responses alone are adequate to confer protection against SARS-CoV-2 and describe the administration of 20 peptides with an RNA adjuvant in mice. The peptides have been synthesized based on SARS-CoV-2 spike and nucleocapsid protein sequences. Our study demonstrates that immunization with these peptides significantly increases the proportion of effector memory T cell population and interferon-γ (IFN-γ)-, interleukin-4 (IL-4)-, tumor necrosis factor-α (TNF-α)-, and granzyme B-producing T cells. Of these 20 peptides, four induce the generation of IFN-γ-producing T cells, elicit CD8+ T cell (CTL) responses in a dose-dependent manner, and induce cytotoxic T lymphocytes that eliminate peptide-pulsed target cells in vivo. Although it is not statistically significant, these peptide vaccines reduce viral titers in infected hamsters and alleviate pulmonary pathology in SARS-CoV-2-infected human ACE2 transgenic mice. These findings may aid the design of effective SARS-CoV-2 peptide vaccines, while providing insights into the role of T cells in SARS-CoV-2 infection.

16.
Mar Drugs ; 19(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436252

RESUMO

Ochraceopetalin (1), a mixed-biogenetic salt compound and its component 2 were isolated from the culture broths of a marine-derived fungus, Aspergillus ochraceopetaliformis. Based on combined spectroscopic and chemical analyses, the structure of 1 was determined to be a sulfonated diphenylether-aminol-amino acid ester guanidinium salt of an unprecedented structural class, while 2 was determined to be the corresponding sulfonated diphenylether. Ochraceopetaguanidine (3), the other guanidine-bearing aminol amino acid ester component, was also prepared and structurally elucidated. Compound 1 exhibited significant cytotoxicity against K562 and A549 cells.


Assuntos
Antineoplásicos/farmacologia , Aspergillus/química , Células A549/efeitos dos fármacos , Organismos Aquáticos , Humanos , Células K562/efeitos dos fármacos , Relação Estrutura-Atividade
17.
J Neurosci ; 41(41): 8475-8493, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34446569

RESUMO

In mammals, environmental cold sensing conducted by peripheral cold thermoreceptor neurons mostly depends on TRPM8, an ion channel that has evolved to become the main molecular cold transducer. This TRP channel is activated by cold, cooling compounds, such as menthol, voltage, and rises in osmolality. TRPM8 function is regulated by kinase activity that phosphorylates the channel under resting conditions. However, which specific residues, how this post-translational modification modulates TRPM8 activity, and its influence on cold sensing are still poorly understood. By mass spectrometry, we identified four serine residues within the N-terminus (S26, S29, S541, and S542) constitutively phosphorylated in the mouse ortholog. TRPM8 function was examined by Ca2+ imaging and patch-clamp recordings, revealing that treatment with staurosporine, a kinase inhibitor, augmented its cold- and menthol-evoked responses. S29A mutation is sufficient to increase TRPM8 activity, suggesting that phosphorylation of this residue is a central molecular determinant of this negative regulation. Biophysical and total internal reflection fluorescence-based analysis revealed a dual mechanism in the potentiated responses of unphosphorylated TRPM8: a shift in the voltage activation curve toward more negative potentials and an increase in the number of active channels at the plasma membrane. Importantly, basal kinase activity negatively modulates TRPM8 function at cold thermoreceptors from male and female mice, an observation accounted for by mathematical modeling. Overall, our findings suggest that cold temperature detection could be rapidly and reversibly fine-tuned by controlling the TRPM8 basal phosphorylation state, a mechanism that acts as a dynamic molecular brake of this thermo-TRP channel function in primary sensory neurons.SIGNIFICANCE STATEMENT Post-translational modifications are one of the main molecular mechanisms involved in adjusting the sensitivity of sensory ion channels to changing environmental conditions. Here we show, for the first time, that constitutive phosphorylation of the well-conserved serine 29 within the N-terminal domain negatively modulates TRPM8 channel activity, reducing its activation by agonists and decreasing the number of active channels at the plasma membrane. Basal phosphorylation of TRPM8 acts as a key regulator of its function as the main cold-transduction channel, significantly contributing to the net response of primary sensory neurons to temperature reductions. This reversible and dynamic modulatory mechanism opens new opportunities to regulate TRPM8 function in pathologic conditions where this thermo-TRP channel plays a critical role.


Assuntos
Membrana Celular/genética , Membrana Celular/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Animais , Células COS , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , Gânglio Trigeminal/metabolismo
18.
Mar Drugs ; 19(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067454

RESUMO

Four epipolythiodioxopiperazine fungal metabolites (1-4) isolated from the sponge-derived Aspergillus quadrilineatus FJJ093 were evaluated for their capacity to inhibit isocitrate lyase (ICL) in the glyoxylate cycle of Candida albicans. The structures of these compounds were elucidated using spectroscopic techniques and comparisons with previously reported data. We found secoemestrin C (1) (an epitetrathiodioxopiperazine derivative) to be a potent ICL inhibitor, with an inhibitory concentration of 4.77 ± 0.08 µM. Phenotypic analyses of ICL-deletion mutants via growth assays with acetate as the sole carbon source demonstrated that secoemestrin C (1) inhibited C. albicans ICL. Semi-quantitative reverse-transcription polymerase chain reaction analyses indicated that secoemestrin C (1) inhibits ICL mRNA expression in C. albicans under C2-assimilating conditions.


Assuntos
Candida albicans/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , Isocitrato Liase/antagonistas & inibidores , Piperazinas/farmacologia , Aspergillus/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glioxilatos/metabolismo , Isocitrato Liase/química , Isocitrato Liase/genética , Piperazinas/química , Piperazinas/metabolismo , Proteínas Recombinantes/química
19.
Taehan Yongsang Uihakhoe Chi ; 82(6): 1606-1612, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36238869

RESUMO

Hypertrophic osteoarthropathy (HOA) is a syndrome characterized by digital clubbing, periosteal bone formation, and synovial effusions. Secondary HOA is associated with intrathoracic malignancy in most cases; however, in rare cases, HOA can be caused by extrathoracic conditions. We report early ultrasound, computed tomography, magnetic resonance imaging, and bone scintigraphy findings of HOA in a patient with breast cancer. Its ambiguous clinical and imaging findings that mimicked malignant conditions are particularly interesting and informative.

20.
Mar Drugs ; 19(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374750

RESUMO

Six new bis(indole) alkaloids (1-6) along with eight known ones of the topsentin class were isolated from a Spongosorites sp. sponge of Korea. Based on the results of combined spectroscopic analyses, the structures of spongosoritins A-D (1-4) were determined to possess a 2-methoxy-1-imidazole-5-one core connecting the indole moieties, and these were linked by a linear urea bridge for spongocarbamides A (5) and B (6). The absolute configurations of spongosoritins were assigned by electronic circular dichroism (ECD) computation. The new compounds exhibited moderate inhibition against transpeptidase sortase A and weak inhibition against human pathogenic bacteria and A549 and K562 cancer cell lines.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Alcaloides Indólicos/farmacologia , Poríferos/metabolismo , Células A549 , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Animais , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Humanos , Alcaloides Indólicos/isolamento & purificação , Células K562 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...